Data

“We don’t want to be in a situation where the customer is ‘creeped out'”: How Barclays US is using AI

  • Barclays uses customer data to recommend products to customers and better understand customer sentiment
  • Rigorous beta testing is needed to ensure customer comfort with data gathering as a basis for personalized interactions
close

Email a Friend

“We don’t want to be in a situation where the customer is ‘creeped out'”: How Barclays US is using AI

The race to become the customer’s mobile digital banking ecosystem is getting tighter, and Barclays wants in.

Barclays — the bank behind popular co-branded cards including Uber, American Airlines, JetBlue and a host of other retail partners — is using customer data to suggest products and understand the root causes of customer complaints. It’s an approach large banks like Capital One and JPMorgan Chase as well as startups like Credit Karma and MoneyLion are using to push insights and recommendations that are most relevant to the customer’s spending behavior and product preferences.

The transatlantic consumer, corporate and investment bank’s U.S.-based business is also moving beyond credit cards, savings accounts and loans to launch a full-service digital bank later this year.

Tearsheet spoke with Mona Jantzi, managing director of strategic analytics and customer experience, to learn more about how Barclays is using data to create personalized experiences for customers. The answers below have been edited for length and clarity.

How do you use data to shape customer experiences?
We’re trying to leverage all the information about the customer so we can to make experiences as seamless and effortless as possible. With the Uber card, for example, we’re working closely with Uber to make use of appropriate information they may know about customers, and recommend the right type of offers to the right type of customer at the right points in time.

How does use of customer data go beyond product offers?
One of the technologies we’re using is unstructured machine learning technology that involves natural-language processing to do text analysis on complaints. By using natural-language processing, we get to know the underlying reasons for complaints. For example, we have some complaints about account closure. But when you look at what the customer is concerned about, something else that happened earlier hasn’t met their needs. This technique also allows us to do sentiment analysis of how distressed the customer is.

Do you use artificial intelligence to sift through the data? And what do you mean by AI, exactly?
AI is sort of a broad term that’s used for different [machine-learning] techniques. We’ve talked about unstructured machine learning, where you’re trying to categorize it [for example, using natural-language processing to analyze complaints] and structured machine learning, where we’re using data from customers and partners to determine what offer would be most interesting to a particular person.

Is there a danger about data quality and the data not providing an accurate picture of the customer’s behavior?
One of the most important things that we do is to make sure we are respecting the customer’s data and using it correctly. We have a very robust system of checks and balances in place to protect customer data and make sure there are no breaches. We also track outcomes to ensure the customer experience is exactly what we intended. We’re making sure that customers are actually able to go through a digital channel and achieve what they’re trying to achieve and that they’re in a good place financially, and that we’re not providing a credit limit that’s inappropriate for a particular customer.

Is data part of your strategy to scale across the U.S.? 
It’s a massive part of our strategy. We did a pilot last year with a mobile app called “My Personal Banker” where customers put in some of their information from other institutions to provide a full picture of their financial health.

With all this data gathering, how do you avoid creeping out the customer?
We do a lot of testing, we are very thoughtful about products we develop and ways we communicate with customers. We don’t want to be in a situation where the customer is “creeped out”. We try to be very sensitive to that. We do a lot of data analysis and co-create experiences and products with customers to get a sense whether something will resonate or not. It’s an interesting time. It becomes straddling between convenience and relevance for the customer and going too far, [the sense of which] is different for each customer.

0 comments on ““We don’t want to be in a situation where the customer is ‘creeped out'”: How Barclays US is using AI”

Data, Podcasts, Sponsored

‘Earned wage access is the next evolution in improving day-to-day liquidity’: Argyle’s Matthew Gomes

  • Director of strategy at Argyle, Matt Gomes, joins us on the Tearsheet Podcast.
  • Listen in to our conversation about how payroll and employment data API platforms enable financial institutions to bring the next generation of financial products to consumers.
Argyle | September 22, 2022
Data, Podcasts, Sponsored

‘Developers have become as central a figure as the banks’: Fiserv’s Niranjan Ramaswamy

  • VP and GM of embedded fintech at Fiserv, Niranjan Ramaswamy, joins us on the Tearsheet Podcast.
  • Listen to our conversation about how Fiserv empowers developers to build products that bring fintechs and FIs together.
Fiserv | September 21, 2022
Data

Another PayPal exec joins MX: 6 questions with CTO Wes Hummel

  • PayPal vp Wes Hummel joins MX as a CTO, merely weeks after PayPal svp Jim Magats joined MX as its CEO.
  • Hummel believes the next stage of development in the industry will see fintechs connect with the financial industry at large.
Subboh Jaffery | September 08, 2022
Data, Podcasts, Sponsored

‘Not all fintech integrations are created equal’: Fiserv’s Jon Nordhausen

  • VP of product strategy at Fiserv, Jon Nordhausen, joins us on the Tearsheet Podcast.
  • Listen to our conversation about how cloud data integration is removing friction and enabling new capabilities for data to flow seamlessly between fintechs and FIs.
Fiserv | September 07, 2022
Data, Podcasts, Sponsored

‘Data is the crux of open finance’: Fiserv’s Jamie DelMedico

  • General Manager of Fiserv’s Aggregation and Information Services unit, Jamie DelMedico, joins us on the Tearsheet Podcast.
  • Listen in to our conversation about the evolution of data processes that are helping drive the push toward open finance.
Zachary Miller | August 24, 2022
More Articles